DIN EN 14067-6:2010-05 (D)

Bahnanwendungen - Aerodynamik - Teil 6: Anforderungen und Prüfverfahren für die Bewertung von Seitenwind; Deutsche Fassung EN 14067-6:2010

Inhalt

Vorwor	t	7
Einleitu	ing	8
1	Anwendungsbereich	8
2	Normative Verweisungen	8
3	Begriffe	8
4	Symbole und Abkürzungen	9
5	Verfahren zur Bewertung der Seitenwindstabilität von Fahrzeugen	12
5.1 5.2	Allgemeines	12
5.2	bewertung	12
5.3	Bestimmung der aerodynamischen Beiwerte	14
5.3.1	Allgemeines	14
5.3.Z	Vornersageformein	14 15
5.3.4	Windkanalmessungen im Modellmaßstab	13
5.4	Bestimmung der Radentlastung	23
5.4.1	Allgemeines	23
5.4.2	Einfaches Verfahren mit zweidimensionalem Fahrzeugmodell (Drei-Massen-Modell)	23
5.4.3	Erweitertes quasi-statisches Verfahren	27
5.4.4	Zeitabnangiges MKS-vertahren mit Anwendung des Wind-Szenarios Chinesischer Hut	30
5.5 5.5.1		30 38
5.5.2	Darstellung der Windkennkurven von Personenfahrzeugen und Lokomotiven	38
5.5.3	Darstellung der Windkennkurven von Güterfahrzeugen	40
6	Verfahren zur Ermittlung der benötigten Streckendaten	41
6.1	Allgemeines	41
6.2	Darstellung der Streckendaten	41
6.2.1	Allgemeines	41
6.2.2	Horizontalprofil	41
6.2.3	Vertikalprofil	42
6.2.4	Entwurtsgeschwindigkeit der Strecke	43
626	Matteorologische Fingangsdaten zur Streckenbeschreibung	44 44
6.2.7	Integrierte Streckendatenbank	45
6.2.8	Empfohlene Auflösung/Genauigkeit	47
7	Verfahren zur Bewertung der Windexposition von Eisenbahnlinien	47
8	Verfahren zur Untersuchung und Bewertung des Seitenwindrisikos	47
9	Erforderliche Dokumentation	48
9.1	Allgemeines	48
9.2	Bewertung der Seitenwindstabilität von Personenfahrzeugen und Lokomotiven	48 ••
9.3 9.4	Ermittlung der Fisenbahnstreckendaten	4ŏ ⊿∆
Anhano	A (informativ) Anwendung von Verfahren zur Bewertung der Seitenwindstabilität von	43
. aniany	Fahrzeugen in Europa	50
Anhang	g B (informativ) Versperrungskorrektur	54

Anhang C (normativ) Windkanal-Benchmark-Versuchsdaten für die Standardbodenkonfiguration	56
Anhang D (informativ) Andere Bodenkonfigurationen bei Windkanalversuchen	61
Anhang E (informativ) Windkanal-Benchmark-Versuchsdaten für andere Bodenkonfigurationen	65
Anhang F (informativ) Dammüberströmungseffekt	78
Anhang G (informativ) Windkanaluntersuchungen mit atmosphärischer Grenzschicht	79
Anhang H (informativ) Fünf-Massen-Modell	86
Anhang I (normativ) Mathematisches Modell des Chinesischen Huts	101
Anhang J (informativ) Stochastisches Windmodell	108
Anhang K (informativ) Standsicherheit von Personenfahrzeugen und Lokomotiven nach nationa- Ien Richtlinien	116
Anhang L (informativ) Informationen zu Bewertungsverfahren der Windexposition einer Eisen- bahnlinie	119
Anhang M (informativ) Übergangsbestimmungen für diese Europäische Norm	122
Anhang ZA (informativ) Zusammenhang zwischen dieser Europäischen Norm und den grund- legenden Anforderungen der EG-Richtlinie 2008/57/EG	123
Literaturhinweise	128

Bilder

Bild 1 — Skizze für die Windkanalkonfiguration Einzelgleis mit Schotter und Schienen (Vorderansicht, 1:1-Maßstab)	22
Bild 2 — Skizze für die Windkanalkonfiguration Einzelgleis mit Schotter und Schienen (Seitenansicht und Draufsicht, 1:1-Maßstab)	22
Bild 3 — Darstellung des Drei-Massen-Modells	25
Bild 4 — Darstellung Radaufstandspunkt	29
Bild 5 — Beispiel für den räumlichen Verlauf des Winds bei Anwendung des Böen-Modells Chinesischer Hut	31
Bild 6 — Darstellung des Abfalls der Windgeschwindigkeit im Böen-Szenario Chinesischer Hut	33
Bild 7 — Anwendung des Böen-Szenarios Chinesischer Hut: Beispiel für den zeitlichen Wind- geschwindigkeitsverlauf bei v_{tr} = 200 km/h, v_W = 30 m/s, Fahrzeuglänge = 24 m	34
Bild 8 — Darstellung des geometrischen Verfahrens zur Berücksichtigung des Angriffswinkels	37
Bild 9 — Darstellung des geometrischen Verfahrens zur Berücksichtigung des Angriffswinkels für die Windkennkurven auf gerader Strecke	38
Bild C.1 — Kontur eines Windkanalmodells eines ICE-3-Endwagens	56
Bild C.2 — Kontur eines Windkanalmodells eines TGV-Duplex-Triebkopfs	58
Bild C.3 — Kontur eines Windkanalmodells eines ETR-500-Triebkopfs	60
Bild D.1 — Skizze für die Windkanalkonfiguration Flachgrund mit 235 mm Spalt	61
Bild D.2 — Skizze der Schotterbettgeometrie	62
Bild D.3 — Skizze der Dammgeometrie	62
Bild D.4 — Skizze für die Windkanalkonfiguration Flachgrund ohne Spalt	63
Bild D.5 — Schotterbett- und Schienen-Konfiguration eines nicht überhöhten Gleises in Groß- britannien	64
Bild D.6 — Sägezahnförmig überhöhtes Schotterbett mit Schienen in Großbritannien	64

Bild F.1 — Darstellung des Dammüberströmungsfaktors	78
Bild G.1 — Oberer und unterer Grenzwert für Profile der mittleren Geschwindigkeit	80
Bild H.1 — Darstellung des Fünf-Massen-Modells	87
Bild I.1 — Koordinatensystem	101
Bild I.2 — Abhängigkeit von f von $U_{\sf mean}$ und $U_{\sf max}$	103
Bild J.1 — Ablaufplan des Verfahrens	109
Bild J.2 — Parameter C und m als Funktion der Rauigkeitshöhe z_0 für die Berechnung von ^x L_u (Zusammenhang nach Couninhan)	111

Tabellen

Tabelle 1 — Symbole	9
Tabelle 2 — Anwendbarkeit von Verfahren zur Bestimmung der Seitenwindstabilität für die Fahr- zeugbewertung	13
Tabelle 3 — Parameter für die Standard-Bodenkonfiguration (Normalspur)	14
Tabelle 4 — Methodikfaktor f_m für UIC-Standardspurweite (1 435 mm) für verschiedene Fahrzeug- typen	25
Tabelle 5 — Funktionen für den Chinesischen Hut	34
Tabelle 6 — Darstellungsform der Windkennkurven-Tabelle für Personenfahrzeuge und Loko- motiven, betrieben ohne Neigetechnik	39
Tabelle 7 — Darstellungsform der Windkennkurven-Tabelle für Fahrzeuge, betrieben mit aktiver Neigetechnik	39
Tabelle 8 — Darstellungsform der Windkennkurven-Tabelle für Güterfahrzeuge	40
Tabelle 9 — Darstellung der Parameter des Horizontalprofils	42
Tabelle 10 — Darstellung der Vertikalprofilparameter	43
Tabelle 11 — Darstellung der Streckenentwurfsgeschwindigkeit	43
Tabelle 12 — Darstellung der Wand	44
Tabelle 13 — Darstellung der Streckendaten; meteorologischer Teil	45
Tabelle 14 — Darstellung der integrierten Streckendatenbank	46
Tabelle 15 — Geforderte Mindestauflösung/-genauigkeit	47
Tabelle A.1 — Anwendung methodologischer Elemente zur Fahrzeugbewertung in Europa (aerodynamische Bewertung)	50
Tabelle A.2 — Anwendung methodologischer Elemente zur Fahrzeugbewertung in Europa (Bewertung der Fahrzeugdynamik)	53
Tabelle C.1 — Referenzdaten für die aerodynamischen Beiwerte des ICE-3-Endwagenmodells für die Bodenkonfiguration "Einzelgleis mit Schotter und Schienen" nach 5.3.4.11	57
Tabelle C.2 — Referenzdaten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopf- modells für die Bodenkonfiguration "Einzelgleis mit Schotter und Schienen" nach 5.3.4.11	59
Tabelle C.3 — Referenzdaten für die aerodynamischen Beiwerte des ETR-500-Triebkopfmodells für die Bodenkonfiguration "Einzelgleis mit Schotter und Schienen" nach 5.3.4.11	60
Tabelle E.1 — Benchmark-Daten für die aerodynamischen Beiwerte des ICE-3-Endwagens auf Flachgrund mit Spalt, gemessen von der DB AG im DNW-Windkanal an einem 1:7-Modell	GF
NGI ON 111/2	05

Tabelle E.2 — Benchmark-Daten für die aerodynamischen Beiwerte des ICE-3-Endwagens auf der windzugewandten Seite von zwei Gleisen mit Schotterbett und Schienen, gemessen von CSTB im CSTB-Windkanal an einem 1:15-Modell bei 50 m/s	66
Tabelle E.3 — Benchmark-Daten für die aerodynamischen Beiwerte des ICE-3-Endwagens auf der Leeseite von zwei Gleisen mit Schotterbett und Schienen, gemessen von CSTB im CSTB- Windkanal an einem 1:15-Modell bei 50 m/s	67
Tabelle E.4 — Benchmark-Daten für die aerodynamischen Beiwerte des ICE-3-Endwagens auf der windzugewandten Seite des Standarddamms mit 6 m Höhe, gemessen von CSTB im CSTB-Windkanal an einem 1:15-Modell bei 50 m/s	68
Tabelle E.5 — Benchmark-Daten für die aerodynamischen Beiwerte des ICE-3-Endwagens auf der Leeseite des Standarddamms mit 6 m Höhe, gemessen von CSTB im CSTB-Windkanal an einem 1:15-Modell bei 50 m/s	69
Tabelle E.6 — Benchmark-Daten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopfs auf Flachgrund mit Spalt, gemessen von der DB AG im DNW-Windkanal an einem 1:7- Modell bei 80 m/s	70
Tabelle E.7 — Benchmark-Daten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopfsauf der windzugewandten Seite von zwei Gleisen mit Schotterbett und Schienen, gemessen von CSTB im CSTB-Windkanal an einem 1:15-Modell bei 25 m/s	71
Tabelle E.8 — Benchmark-Daten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopfs auf der Leeseite von zwei Gleisen mit Schotterbett und Schienen, gemessen von CSTB im CSTB-Windkanal an einem 1:15-Modell bei 25 m/s	72
Tabelle E.9 — Benchmark-Daten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopfs auf der windzugewandten Seite des Standarddamms mit 6 m Höhe, gemessen von CSTB im CSTB-Windkanal an einem 1:25-Modell bei 40 m/s	73
Tabelle E.10 — Benchmark-Daten für die aerodynamischen Beiwerte des TGV-Duplex-Triebkopfs auf der Leeseite des Standarddamms mit 6 m Höhe, gemessen von CSTB im CSTB-Wind- kanal an einem 1:25-Modell bei 40 m/s	74
Tabelle E.11 — Benchmark-Daten für die aerodynamischen Beiwerte des ETR-500-Triebkopfs auf Flachgrund mit Spalt, gemessen vom Politecnico di Milano im MPWT-Windkanal an einem 1:10-Modell bei 12 m/s	75
Tabelle E.12 — Benchmark-Daten für die aerodynamischen Beiwerte für den ETR-500-Triebkopf auf der windzugewandten Seite des Standarddamms mit 6 m Höhe, gemessen vom Poli- tecnico di Milano im MPWT-Windkanal an einem 1:10-Modell bei 12 m/s	76
Tabelle E.13 — Benchmark-Daten für die aerodynamischen Beiwerte des ETR-500-Triebkopfs auf der Leeseite des Standarddamms mit 6 m Höhe, gemessen vom Politecnico di Milano im MPWT-Windkanal an einem 1:10-Modell bei 12 m/s	77
Tabelle H.1 — Parameter der Körper	93
Tabelle H.2 — Parameter der Sekundärfederung	93
Tabelle H.3 — Parameter der Primärfederung	94
Tabelle H.4 — Allgemeine Parameter	94
Tabelle H.5 — Aerodynamische Beiwerte	94
Tabelle H.6 — Ergebnis Windkennkurven für Beispielfahrzeug 1: v_{CWC} in [m/s] über Fahrzeug- geschwindigkeit und a_q bei $\beta_W = 90^\circ$	95
Tabelle H.7 — Ergebnis Windkennkurven für Beispielfahrzeug 1: v_{CWC} in [m/s] über β_W und a_q bei $v_{max} = 160$ km/h	96
Tabelle H.8 — Parameter der Körper	97
Tabelle H.9 — Parameter der Sekundärfederung	97
Tabelle H.10 — Parameter der Primärfederung	97
Tabelle H.11 — Allgemeine Parameter	98

Tabelle H.12 — Aerodynamische Beiwerte	98
Tabelle H.13 — Ergebnis Windkennkurven für Beispielfahrzeug 2: v_{CWC} in [m/s] über Fahrzeug- geschwindigkeit und a_q bei $\beta_W = 90^\circ$	99
Tabelle H.14 — Ergebnis Windkennkurven für Beispielfahrzeug 2: v_{CWC} in [m/s] über β_W und a_q bei v_{max} = 200 km/h	100
Tabelle I.1 — Beispielrechnung zum Böenszenario Chinesischer Hut mit U_{max} = 30,0 m/s, v_{tr} = 200 km/h, Fahrzeuglänge = 24 m	105
Tabelle ZA.1 – Zusammenhang zwischen dieser Europäischen Norm, der HS TSI RST, die im Amtsblatt vom 26. März 2008 veröffentlicht wurde, und der Richtlinie 2008/57/EG	124
Tabelle ZA.2 – Zusammenhang zwischen dieser Europäischen Norm, der HS TSI INF, die im Amtsblatt vom 19. März 2008 veröffentlicht wurde, und der Richtlinie 2008/57/EG	125
Tabelle ZA.3 – Zusammenhang zwischen dieser Europäischen Norm, der CR TSI RST Güter- wagen Stand Juli 2006 und ihrer zwischenzeitlichen Überarbeitung, die am 26. November 2008 vom "Railway Interoperability and Safety Committee" beschlossen wurde, und der Richtlinie 2008/57/EG	125
Tabelle ZA.4 – Zusammenhang zwischen dieser Europäischen Norm, der CR TSI INF (Schluss- Entwurf Version 3.0 Stand 12.12.2008) und der Richtlinie 2008/57/EG	126
Tabelle ZA.5 – Zusammenhang zwischen dieser Europäischen Norm, der CR TSI Personenfahr- zeuge und Lokomotiven (Vorläufiger Entwurf Rve 2.0 Stand 14. November 2008) und der Richtlinie 2008/57/EG	127